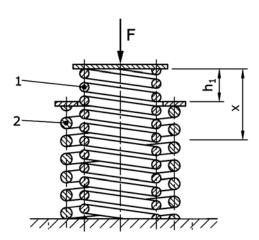
Machine Components 2 Moodle examination from SS 2020


time to finish: 60 min.

1. Springs (18 Min.)

A combination of 2 helical springs is given as shown (not drawn to scale).

Given:

Number of active turns $i_2 = 0.5*i_1$ Spring wire diameter $d_2 = 1.5*d_1$ Coil diameter $D_2 = 1.5*D_1$ distance $h_1 = 10mm$

a) to be determined: spring rate c_2 of spring 2, if c_1 =12 N/mm is given for spring 1. [36 N/mm]

Continue calculating with the following (independent from your result in a)):

 $c_1 = 10 \text{ N/mm}, c_2 = 3c_1 = 30 \text{ N/mm}$

To be determined:

- b) the spring forces F_1 and F_2 of the two single springs, if $x = 3*h_1$, as well as the overall spring rate c at the end of this suspension path. [300 N; 600 N; 40 N/mm]
- c) the deflection x_0 , if the torsional stress in both springs 1 and 2 is equal. What total force F_0 is acting in that case? [40mm; 1300 N]

2. Durability of antifriction bearings (10 Min.)

The front wheel hub of a man's bicycle is equipped with two ball bearings, which both have a catalog load rating of 1000 N each. The weight of the bicycle is 16 kg, the driver weighs 100 kg, incl. baggage. The total mass is distributed by 2:3 in ratio of front- to rear-wheel. The circumference of the wheels is 2100 mm.

- a) What overall distance s_H in km can be expected with this bearing arrangement until the nominal operating life time is reached? Give also the result for L_{h10} ! [178000 km]
- b) What overall distance s_D in km can be reaches with a ladies' bicycle, if the load to the front wheel is reduced by 20% (all others remain unchanged)? [348000 km]

c) Give reason,	why those	operational	life times	are never	reached	with o	ordinary	bicycles.

3. Spur gear dimensioning (10 Min.)

After a heavy overload all teeth of an old single-stage spur gear are broken and the wheel body is destroyed. Only at the (larger) wheel 2 it can be seen that it had $z_2 = 39$ teeth and the dedendum circle (root) diameter was $d_{f2} = 146$ mm. The center-to-center distance has been established to a = 118 mm.

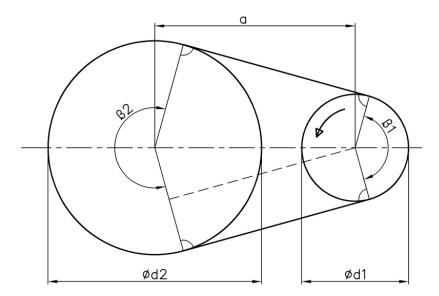
To be determined:

a) Re-design of the gearing data for a replacement (gears with straight teeth without profile shift):

Module m in mm

Number of teeth z_1

Addendum circle (outside) diameter da1, da2 in mm


[4mm; 20; 88mm; 164mm]

b) How could an alternative set-up of a new gear-train be arranged to reduce the noise during operation.

c) What kind of damage is possibly risked with this alternative gear-train, if everything else remains unchanged (give reasons)?

4. Flexible element drive (22 Min.)

Given is the sketched flat belt drive:

Center-to-center distance: a = 350 mm

Effective disc diameter $d_1 = 200 \text{ mm}$; $d_2 = 400 \text{ mm}$

Permissible belt tensile force in the tight side: $R_{zul} = 1100 \text{ N}$, friction coefficient $\mu = 0.45$

Eytelwein equation for the belt tensile forces $R_2 > R_1$; $R_2/R_1 = e^{\mu\beta}$

All others (centrifugal forces, loss of efficiencies, slippages, etc.) to be neglected!

To be determined:

a) Angle of wrap β_1 and β_2 in degrees [°] [146,8°; 213,2°]

Continue calculating with β_1 =150° (independent from your results in a)):

- b) Belt tensile force R_1 in the slack side and the maximum transmissible torque T_{1max} at the driving disc 1, if the maximum permissible belt tensile force $R_{max} = R_2$ in the tight side is used to full capacity. [339N; 76,1Nm]
- c) during assembly of the belt: necessary preload force R_0 in the belt and the resulting total force F_R to the discs. [719N; 1390N]

d) Give both an advantage and a disadvantage of a flat belt versus a timing belt:	
Advantage:	
Disadvantage:	
e) Give both an advantage and a disadvantage of a flat belt versus a V-belt:	
Advantage:	
Disadvantage:	