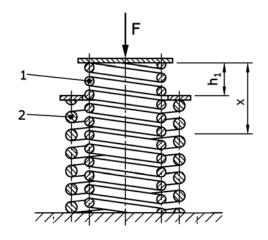
ME2 Moodle-Prüfung vom SS 2020


Bearbeitungszeit: 60 Min., "Open Book", d.h. alle Hilfsmittel in Papierform waren zulässig. Bei Präsenzprüfungen gilt: zulässige Hilfsmittel sind Formelsammlung + Taschenrechner

1. Federn (18 Min.)

Gegeben ist die skizzierte Kombination aus 2 Schraubenfedern (keine maßstabsgetreue Darstellung).

Gegeben:

federnde Windungen $i_2=0.5*i_1$ Drahtdicken $d_2=1.5*d_1$ mittl. Wicklungs-Dmr. $D_2=1.5*D_1$ Abstand $h_1=10$ mm

a) Gesucht: Federsteifigkeit c_2 der Einzelfeder 2, wenn für Feder 1 gilt c_1 =12 N/mm [36 N/mm]

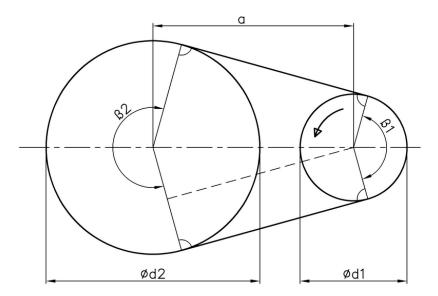
Rechnen Sie jetzt unabhängig von Ihren Ergebnissen weiter mit den Federsteifigkeiten c_1 = 10 N/mm, c_2 = 3 c_1 = 30 N/mm

Gesucht:

- b) Federkräfte F_1 und F_2 auf die Einzelfedern bei Gesamteinfederung $x=3*h_1$, sowie die Gesamtfedersteifigkeit c am Ende dieses Federwegs. [300 N; 600 N; 40 N/mm]
- c) Bei welcher Einfederung x_0 wirken in den Federn 1 und 2 dieselben Schubspannungen aus Torsion, und welche Gesamtkraft F_0 wirkt dabei? [40mm; 1300 N]

2. Wälzlagerlebensdauer (10 Min.)

Die Vorderradnabe eines Herrenfahrrades ist symmetrisch mit zwei Kugellagern ausgestattet, die eine dynamische Tragzahl von je 1000 N aufweisen. Das Fahrrad bringt 16 kg auf die Waage und für Fahrer samt Gepäck werden 100 kg angenommen. Die Gesamtmasse verteilt sich im Verhältnis 2:3 auf Vorder- und Hinterrad. Der Abrollumfang der Reifen beträgt 2100 mm.


- a) Welche Fahrstrecke s_H in km ist bei dieser Lagerung zu erwarten, bis die Lager die nominelle Lebensdauer erreicht haben? [178000 km]
- b) Welche Fahrstrecke s_D erreichen dieselben Lager bei einem Damenfahrrad mit um 20% verminderter Belastung des Vorderrads (Bereifung unverändert)? [348000 km]
- c) Begründen Sie, warum diese Lebensdauern bei normalen Fahrrädern niemals erreicht werden!

3. Stirnradauslegung (10 Min.)

Nach einer starken Überlastung sind bei einem alten einstufigen Stirnradgetriebe alle Zähne gebrochen und die Radkörper stark zerstört. Nur beim (größeren) Rad 2 kann man noch feststellen, dass dieses z_2 =39 Zähne und einen Fußkreisdurchmesser von d_{f2} =146 mm hatte. Der Achsabstand kann mit a=118mm ermittelt werden.

Gesucht:		
a) Rekonstruktion der	Verzahnungsdaten für eine Ersat	zfertigung (Geradverzahnung ohne
Profilverschiebung):		
	Modul m in mm	
	Zähnezahl z ₁	
	Kopfkreisdurchmesser da1, da2 i	n mm
		[4mm; 20; 88mm; 164mm]
b) Wie könnte man be	eim Neuaufbau des Getriebes eine	alternative Verzahnung auslegen, die
deutlich leiser läuft?		
c) Welchen Schaden r	iskiert man mit dieser alternative	n Verzahnung, wenn alles andere an
dem Getriebe unverän	ndert beibehalten wird (mit Begrün	ndung)?

4. Riementrieb (22 Min.)

Gegeben ist der skizzierte Flachriementrieb:

Achsabstand: a = 350 mm

Keilriemen:

Wirksame Scheibendurchmesser $d_1=200$ mm; $d_2=400$ mm zulässige Riemen-Zugkraft im Lasttrum $R_{zul}=1100$ N, Reibungskoeffizient $\mu=0,45$ Eytelweinsche Gleichung für die Riemenzugkräfte $R_2>R_1;\ R_2/R_1=e^{\mu B}$ Bei den Berechnungen werden Fliehkräfte, Wirkungsgradverluste und Schlupf vernachlässigt! Gesucht:

a) Umschlingungswinkel β₁ und β₂ in Winkelgrad [°] [146,8°; 213,2°]

Rechnen Sie jetzt unabhängig von Ihren Ergebnissen weiter mit β₁=150°

- b) Riemenzugkraft R_1 im Leertrum und maximal übertragbares Drehmoment T_{1max} an der Antriebsscheibe 1, wenn die max. zulässige Riemenzugkraft $R_{max} = R_2$ im Lasttrum ausgenutzt wird, [339N; 76,1Nm]
- c) bei Montage des Riemens: Erforderliche Vorspannkraft R_0 im Riemen und daraus resultierende Gesamtkraft F_R auf die Riemenscheiben. [719N; 1390N]
- d) Nennen Sie je einen Vorteil und einen Nachteil des Flachriemens gegenüber dem Zahnriemen:

Vorteil:	_
Nachteil:	
e) Nennen Sie je einen Vorteil und einen Nachteil des Flachriemens gegenüb	er dem

Vorteil:		
Nachteil:		