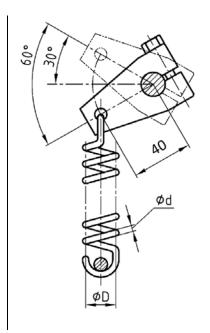


Fakultät 09, Studiengänge WI, LM, AU Prüfung Maschinenelemente 2 WiSe 2020/21

Dr. Anzinger, Dr. Hoffmann, Dr. Meier-Staude, Dr. Pflaum

Bearbeitungszeit: 60 min			19.1.2021
Hilfsmittel: Taschenrechner, beiliegende Formelsammlung			
Name:		Sem.:	Platz-Nr.:
Vorname:			Raum-Nr.:
Studienausweis und Lichtbildausweis sind am Prüfungsplatz aufzulegen			
Unterschrift:		Aufsicht:	
Aufgabe 1: Tellerfedern (5 Punkt	te)		
Gegeben sind Tellerfedern mit:			
 Federsteifigkeit einer einzelnen Feder: C₀ = 1000 N/mm Maximaler Federweg einer Tellerfeder: s₀ = 2 mm (bis sie eben gedrückt ist) 			
Geben Sie für die folgenden Anordnungen aus je vier Tellerfedern die Federsteifigkeit am Anfang des Federweges und den Gesamtfederweg an:			
I)		II)	
III)		IV)	
Federanordnung	Federsteifigkeit, N/m	ım Ge	esamtfederweg, mm
III IV			

Aufgabe 2: Schraubenfeder (28 Punkte)


Die im Bild dargestellte Schraubenzugfeder mit Hakenösen dient zur Rückführung einer unter Drehpendelung arbeitenden Schaltwelle.

Gegeben:

Wicklungsdurchmesser D = 30 mm Drahtdurchmesser d = 2,6 mm

Federkräfte:

Position unten: $F_U = 15 \text{ N}$ Position oben: $F_O = 37 \text{ N}$

Berechnen Sie Folgendes:

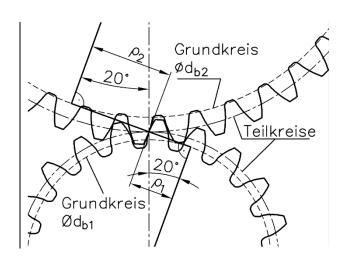
2.1) Federsteifigkeit C der Feder in N/mm sowie die auf 0,25 oder 0,75 gerundete Anzahl der federnden Windungen

Rechnen Sie jetzt unabhängig von Ihren Ergebnissen weiter mit Federsteifigkeit C = 0,51 N/mm und 31,25 Windungen!

- 2.2) Blocklänge I_B der Zugfeder, sowie maximale Länge I_{max} der Feder im Betrieb (= Position oben), wenn vor der Montage die Windungen ohne innere Vorspannkraft anliegen (alle Längen ohne die beiden Ösen).
- 2.3) Sicherheit S_D gegen Dauerbruch der Feder, wenn die Ausschlagfestigkeit für diesen Fall τ_A = 160 N/mm² beträgt
- 2.4) Die Feder erzeugt ein Rückstellmoment bezüglich der Schaltwelle. Berechnen Sie die Rückstellmomente für die Position oben T_0 und unten T_0 .
- 2.5) Berechnen Sie die resultierende Drehfederrate der Schaltwelle Cφ.

[C=0,55; i=30,75; $l_B=81,25$ mm; $l_{max}=153,8$ mm; $S_D=3,0$; $T_{0|u}=1,282$ 0,520 Nm; $c_{\omega}=0,728$ Nm/rad]

Aufgabe 3: Geradverzahntes Stirnradgetriebe und Hertzsche Pressung (22 Punkte)


- 3.1) Kann bei einem geradverzahnten Stirnradgetriebe eine schwimmende Lagerung eingesetzt werden? Begründen Sie Ihre Antwort.
- 3.2) Wie könnte die Lautstärke des Getriebes deutlich gesenkt werden?

Gegeben:

Zähnezahlen $z_1 = 20$; $z_2 = 44$; Modul m = 4 mm; Gemeinsame Zahnbreite 80 mm;

Übertragene Leistung P = 78,5 kWRitzeldrehzahl n_1 = 1500 U/min

Werkstoff: gehärteter Stahl mit Grübchen-Dauerfestigkeit p_{HD} = 1025 N/mm²

Berechnen Sie Folgendes:

- 3.3) Grundkreisdurchmesser d_{b1} und d_{b2},
- 3.4) Krümmungsradien ρ_1 und ρ_2 der Zahnflanken im Wälzpunkt.
- 3.5) Drehmoment T₁ am Ritzel und Zahnnormalkraft F_n.

Rechnen Sie jetzt unabhängig von Ihren Ergebnissen mit ρ_1 = 16 mm, ρ_2 = 35 mm und Zahnnormalkraft F_n = 15 kN weiter.

- 3.6) Wie groß ist die Hertzsche Pressung p_H im Wälzpunkt und die Sicherheit S_H gegen Grübchenbildung?
- 3.7) Die Normalkraft F_n teilt sich für die Ritzelwelle gleichmäßig auf zwei Rillenkugellager auf. Für diese Lager ist mit 90% Wahrscheinlichkeit eine Lebensdauer von 20000 Stunden gefordert. Ermitteln Sie die erforderliche nominelle Lebensdauer L_{10} der Lager in Mio. Umdrehungen, sowie die erforderliche dynamische Tragzahl C_{dyn} in kN!

[d_{b1} =75,2 mm; d_{b2} =165,4 mm; ρ_1 =13,7 mm; ρ_2 =30,1 mm; T_1 =500Nm; F_n =13,3 kN; p_H =790 Nmm²; S_H =1,30; L_{10} =1800 Mío umdr.; C_{dyn} =91,2 kN]