Normalspannung of aus Zug/Druck

 $\sigma = F/A$; Vorzeichen: + Zug – Druck

Tangentialspannung τ aus Querkräften

 $\tau_{\rm m} = Q/A = {\rm mittlere~Schubspannung}$

Gestaltänderung

bei Normalspannung: $\sigma = E \cdot \epsilon$ mit Elastizitätsmodul E in N/mm² und Dehnung $\epsilon = \Delta L/L$ für Stahl: $E \approx 2,1 \cdot 10^5 \text{ N/mm}^2$

bei Tangentialspannung: $\tau = G \cdot \gamma$ mit Gleitmodul G in N/mm² und Gleitwinkel γ in rad für Stahl: $G \approx 8 \cdot 10^4$ N/mm²

Zusammenhang

zwischen E und G: $G = \frac{E}{2 \cdot (1 + v)}$

Querkontraktionszahl $\mathbf{v} = |\mathbf{\varepsilon}_q/\mathbf{\varepsilon}|$ mit $\mathbf{\varepsilon}_q = \Delta d/d$ und $\Delta d < 0$ bei Zug

Für Stahl und viele andere Metalle gilt: $v \approx 0.3$

Begriff der Steifigkeit:

Steifigkeit eines Zugstabes = Federsteifigkeit C

$$C = \frac{E \cdot A}{L}$$
 $F = C \cdot \Delta L$

Biegesteifigkeit eines Biegebalkens: $E \cdot I$

Torsionssteifigkeit eines Torsionsstabes: $G \cdot I_t$ mit $I_t = I_D$ (nur Kreis!) oder: 2. Bredtsche Formel

Thermische Längenänderung

$$\varepsilon_T = \frac{\Delta L}{L} = \alpha \cdot \Delta T$$

mit Temperaturdifferenz $\Delta T = T_2 - T_I$ in K, Wärmeausdehnungskoeffizient α in K⁻¹

Überlagerung mit mechanischer Dehnung:

$$\varepsilon_{ges} = \varepsilon + \varepsilon_T = \frac{\sigma}{E} + \alpha \cdot \Delta T$$

bei vollständiger Dehnungsbehinderung:

$$\varepsilon_{ges} = \varepsilon + \varepsilon_T = \frac{\sigma_T}{E} + \alpha \cdot \Delta T = 0$$

Wärmespannung $\sigma_T = -\alpha \cdot \Delta T \cdot E$

Flächenpressung

Annahme: Flächenpressung p gleichmäßig verteilt innerhalb der Kontaktfläche.

$$p = F/A_{proj}$$
 in N/mm²

mit A_{proj} =Projektion der Kontaktfläche \perp zur Richtung der Kraft F

Flächenträgheitsmomente

axial: $I_y = \int z^2 dA$ $I_z = \int y^2 dA$

polar: $I_p = \int r^2 dA = I_y + I_z$

Axiale Flächenträgheitsmomente I und Biegewiderstandsmomente W_b

Merke: Flächenträgheitsmomente I von Teilflächen um die selbe Achse dürfen addiert oder subtrahiert werden, aber niemals Widerstandsmomente W_b oder W_t !

Steinerscher Satz: Hauptträgheitsachse z durch den Schwerpunkt der Fläche A, v-Achse um den Betrag Δy aus dem SP parallel verschoben:

$$I_v = I_z + \Delta y^2 \cdot A$$
 $I_z = I_v - \Delta y^2 \cdot A$

Das axiale Flächenträgheitsmoment *I* einer Fläche um deren Schwereachse ist stets minimal.

Querschnittsform	$I \text{ in mm}^4, W_b \text{ in mm}^3$	
Biege- achse v b	um Biegeachse: $I = \frac{b \cdot h^3}{12}$ $W_b = \frac{I}{h/2} = \frac{b \cdot h^2}{6}$ um v-Achse: $I_v = \frac{b \cdot h^3}{3}$	
Biege- achse B B B	$I = \frac{B \cdot H^3 - b \cdot h^3}{12}$ $W_b = \frac{I}{H/2}$ $= \frac{B \cdot H^3 - b \cdot h^3}{6 \cdot H}$	
$\emptyset d$	$I = \frac{\pi}{4}r^4 = \frac{\pi}{64}d^4$ $W_b = \frac{I}{d/2} = \frac{\pi}{32}d^3$	
$\frac{\partial d}{\partial D}$	$I = \frac{\pi}{64}(D^4 - d^4)$ $W_b = \frac{I}{D/2}$ $= \frac{\pi}{32} \cdot \frac{D^4 - d^4}{D}$	

Schwerpunktkoordinaten

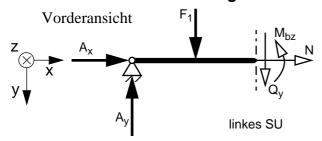
Flächenschwerpunkt:

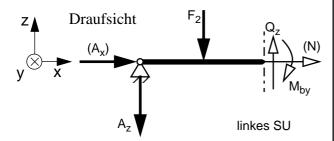
$$y_S = \frac{\sum (y_i \cdot A_i)}{\sum A_i} = \frac{y_1 A_1 + y_2 A_2 + \dots}{A_{ges}}$$

Linienschwerpunkt:

$$y_S = \frac{\sum (y_i \cdot L_i)}{\sum L_i} = \frac{y_1 L_1 + y_2 L_2 + \dots}{L_{ges}}$$

Positive Schnittlasten am Biegebalken





beliebige Streckenlast q(x) und Schnittlasten Q(x), $M_b(x)$

$$q(x) \mid A q(x) = -\frac{d}{dx}Q(x)$$

$$Q(x) = -\int q(x)dx \mid Q(x) = \frac{d}{dx}M_b(x)$$

$$M_b(x) = \int Q(x)dx \mid M_b(x)$$

Biegespannung bei Biegg. um z-Achse

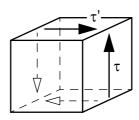
$$\sigma_b = \sigma_b(y) = \frac{M_{bz}}{I_z} \cdot y$$

mit $\pm M_{bz}$ und $\pm y \Rightarrow$ vorzeichenrichtiges σ_b Zug: σ_b positiv, Druck: σ_b negativ maximale Biegespannung σ_{bmax} bei $y = e_{max}$

$$\sigma_{bmax} = \frac{M_{bz}}{W_{bz}}$$
 mit $W_{bz} = \frac{I_z}{e_{max}}$

Zugeordnete Schubspannungen

in zueinander \perp stehenden Ebenen: $\tau = \tau'$

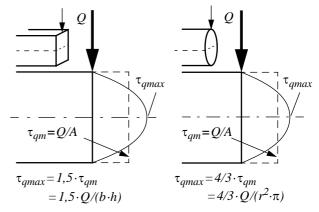


Beanspruchung durch Querkraft

Verlauf der Schubspannungen über der Höhe am Beispiel zweier Vollquerschnitte:

Rechteckquerschnitt

Kreisquerschnitt



Beanspruchung durch Torsion

Torsionsspannung: $\tau_{tmax} = \frac{M_t}{W_t}$

Verdrehwinkel: $\varphi = \frac{M_t \cdot L}{I_t \cdot G}$ in rad,

NUR bei Kreisprofil: $I_t = I_p$

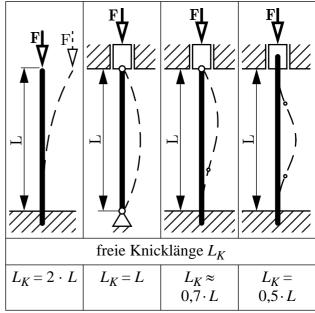
mit: M_t = Torsionsmoment, L = Länge, I_p = polares Flächenträgheitsmoment, W_t = Torsionswiderstandsmoment G = Gleitmodul

Polare Flächenträgheitsmomente I_p und Torsionswiderstandmomente W_t :

Torsionswiderstandmomente W_t :		
I_p in mm ⁴ , W_t in mm ³		
$I_t = I_p = \frac{\pi}{32}d^4$		
$W_t = \frac{I_p}{d/2} = \frac{\pi}{16}d^3$		
$I_t = I_p = \frac{\pi}{32}(D^4 - d^4)$		
$W_t = \frac{I_p}{D/2} =$		
$= \frac{\pi}{16} \cdot \frac{D^4 - d^4}{D}$		
$W_t = 2 \cdot W_b$		
1. Bredtsche Formel: $W_t = 2 \cdot A_m \cdot s_{min}$ A_m : mittlere umschl. Fläche s_{min} : minimale Wanddicke 2. Bredtsche Formel: $I_t = \frac{4 \cdot A_m^2}{\oint \frac{du}{s(u)}}$ und bei $s = konst.$: $I_t = \frac{4 \cdot A_m^2 \cdot s}{U_m}$		

 U_m : mittlere Umfangslänge = Länge der Profilmittellinie

Knickung von Druckstäben der Länge L



Schlankheitsgrad $\lambda = L_K \cdot \sqrt{\frac{A}{I_{min}}}$

Für schlanke Stäbe mit $\lambda \ge \lambda_{min}$: Elastische Knickung nach Euler

Knickkraft
$$F_K = \frac{\pi^2 \cdot E \cdot I_{min}}{L_K^2}$$

Knickspannung
$$\sigma_K = \frac{F_K}{A} = \frac{\pi^2 \cdot E}{\lambda^2}$$

Werte für λ_{min} siehe nachfolgende Tabelle. Für weniger schlanke Stäbe mit $\lambda < \lambda_{min}$: Plastische Knickung nach Tetmajer:

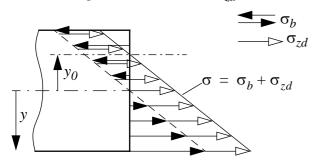
Werkstoff	λ_{min}	σ_K nach Tetmajer
S235 (St37)	104	$\sigma_K = 310-1,14 \cdot \lambda$
E295 (St50) E335 (St60)	88	$\sigma_K = 335 - 0.62 \cdot \lambda$
5%-Ni-Stahl	86	$\sigma_K = 470 - 2,30 \cdot \lambda$
GJL200 (GG20) (E=10 ⁵ N/mm ²)	80	$\sigma_K = 776 - 12\lambda + 0.053\lambda^2$
Bauholz (E=10 ⁴ N/mm ²)	100	$\sigma_K = 29,3-0,194 \cdot \lambda$

Sicherheit gegen Knicken: $S_K = \frac{\sigma_K}{\sigma_d} = \frac{F_K}{F_d}$ mit: Druckkraft F_d , Druckspannung $\sigma_d = F_d/A$ üblicher Bereich für S_K : 2...5

Zusammengesetzte Beanspruchungen

Wenn mehrere Grundbeanspruchungen (Zug/Druck, Biegung, Torsion, Querkraftschub) gleichzeitig an der selben Stelle wirken: Gleichartige Spannungen (nur σ oder nur τ) werden vektoriell addiert, aus ungleichartigen Spann. (σ und τ) wird eine Vergleichsspannung gebildet.

Normalspannung aus Biegung σ_b und Zug/Druck σ_{zd}



resultierende Normalspannung σ:

$$\sigma = \sigma(y) = \frac{M_{bz}}{I_z} \cdot y + \frac{N}{A}$$

Verschiebung y_0 der neutralen Faser ($\sigma = 0$):

$$y_0 = -\frac{N \cdot I_z}{A \cdot M_h}$$

Normalspg. aus Biegung um 2 Achsen (Schiefe Biegung)

Biegung um z-Achse: $\sigma_{by} = \frac{M_{bz}}{I_z} \cdot y$

Biegung um y-Achse: $\sigma_{bz} = \frac{M_{by}}{I_y} \cdot z$

$$\sigma = \sigma_{by} + \sigma_{bz} = \frac{M_{bz}}{I_z} \cdot y + \frac{M_{by}}{I_y} \cdot z$$

Schiefe Biegung mit zusätzlicher Normalkraft N und überlagerter Zug- oder Druckspannung σ_{zd}

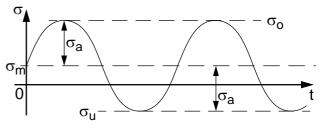
$$\sigma = \sigma_{by} + \sigma_{bz} + \sigma_{zd} = \frac{M_{bz}}{I_z} \cdot y + \frac{M_{by}}{I_y} \cdot z + \frac{N}{A}$$

Die Größen M_{bz} , M_{by} , N, y, z müssen mit richtigem Vorzeichen eingesetzt werden, dann ergibt sich für jede Querschnittsstelle mit den Koordinaten [y;z] die vorzeichenrichtige Gesamtnormalspannung (Zug "+", Druck "-").

Vergleichsspannung $\sigma_{\nu G}$ aus Normalspg. σ und Tangentialspg. τ

$$\sigma_{vG} = \sqrt{(\sigma_b + \sigma_{zd})^2 + 3 \cdot (\tau_q + \tau_t)^2}$$

Dynamische Belastung



mit: $\sigma_0 = \sigma_{max}$: Oberspannung

 $\sigma_{\rm u} = \sigma_{\rm min}$: Unterspannung

 $\sigma_{\rm m} = (\sigma_{\rm o} + \sigma_{\rm u})/2$: Mittelspannung

 $\sigma_a = (\sigma_0 - \sigma_u)/2$: Ausschlagspannung

Sonderfälle:

statisch: $\sigma_u = \sigma_o = \sigma_m$; $\sigma_a = 0$

we chselnd: $\sigma_u = -\sigma_o$; $\sigma_m = 0$; $\sigma_a = \sigma_o$

schwellend: $\sigma_u = 0$; $\sigma_m = \sigma_o/2$; $\sigma_a = \sigma_o/2$

Spannungserhöhung durch Kerben

Formzahl (statisch und dynamisch)

$$\alpha_k = \frac{\text{max. Spannungsspitze}}{\text{Nennspannung}} > 1$$

Dauerfestigkeitsminderung durch Kerben

Kerbwirkungszahl β_k (nur dynamisch)

 $\beta_k = \frac{\text{Ausschlagfestigkeit ohne Kerbe}}{\text{Ausschlagfestigkeit mit Kerbe}}$

 $1 \le \beta_k \le \alpha_k$

Sicherheitsfaktoren

Allgemein:

Sicherheit $S = \frac{\text{Festigkeitswert}}{\text{auftretende Beanspruchung}}$

Bruchsicherheit $S_B = \frac{R_m}{\sigma_{max}}$

 $mit R_m$: Mindest-Zugfestigkeit

Sicherheit gegen plastische Verformung (= Fließen)

$$S_F = \frac{R_e(\text{oder } R_{p0, 2} \text{ oder } \sigma_{bF})}{\sigma_{max}}$$

mit R_e : Elastizitätsgrenze (duktile Werkstoffe) $R_{p0,2}$: 0,2%-Dehngrenze (spröde Werkstoffe) σ_{bF} : Fließgrenze bei Biegebeanspruchung

Sicherheit gegen Dauerbruch

 $S_D = rac{ ext{Ausschlagfestigkeit } \sigma_{AK} ext{ am Bauteil}}{ ext{auftretende Ausschlagspannung } \sigma_a}$ mit $\sigma_{AK} = f(\sigma_m)$ aus Gestaltfestigkeitsdiagramm