# Hochschule München

# Fakultät 09, Studiengänge WI, LM, AU Prüfung Technische Mechanik, SS 2010

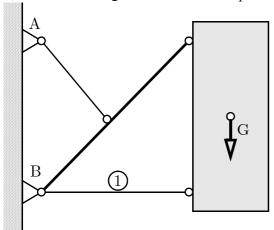
Prof. Dr. Anzinger, Hoffmann, Simon

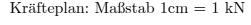
Datum: 08.07.2010

Bearbeitungszeit: 90 Min., Hilfsmittel: Taschenrechner, Formelsammlung

Platz-Nr.: . . . . . . . . . . .

Saal-Nr.: . . . . . . . . . . . .


Der gültige Studienausweis und ein Lichtbildausweis sind am Prüfungsplatz aufzulegen!


Unterschrift: Aufsicht:

#### Aufgabe 1: Graphische Lösungsverfahren (12 Punkte)

Ein Körper mit der Gewichtskraft G=4kN wird von der dargestellten Konstruktion gehalten.

- a) Ermitteln Sie grafisch die Reaktionskräfte in den Lagerstellen A und B!
- b) Ermitteln Sie grafisch die Kraft S<sub>1</sub> im Bauteil 1!



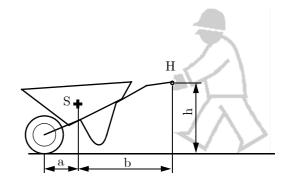




Lösungswerte: 
$$A = ... + B = ... +$$

### **Aufgabe 2: Rollwiderstand (12 Punkte)**

Ein Arbeiter schiebt eine Schubkarre mit konstanter Geschwindigkeit.


Gegeben:

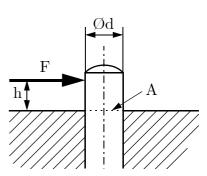
Gewicht der Schubkarre (in S) G = 1000 N,Rollwiderstandszahl  $\mu_R = 0,07,$ 

Abstände: a = 400 mm; b = 1000 mm; h = 830 mm.

Gesucht: die resultierende Handkraft H.

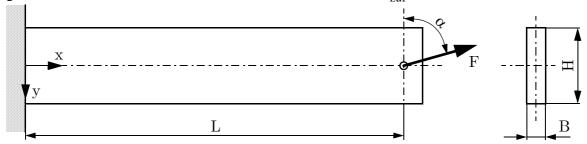
[H= 260 N]




### **Aufgabe 3: Scherstift (7 Punkte)**

Ein fest eingespannter zylindrischer Stahlstift wird mit einer Kraft F belastet, siehe nebenstehende Abbildung.

Gesucht für den Querschnitt A an der Einspannstelle:


- a) Sicherheit  $S_{Fb}$  gegen Fließen infolge max. Biegespannung  $\sigma_b$  ,
- b) Sicherheit  $S_{Fq}$  gegen Fließen infolge maximaler Abscher-Schubspannung  $\tau_{q}$  .

[a) 
$$S_{F0} = 1,23$$
 b)  $S_{Fq} = 1,70$ ]



### Aufgabe 4: Zusammengesetzte Normalspannung (16 Punkte)

Der skizzierte Balken wird mit einer Kraft F in der dargestellten Weise belastet. Gegeben: L=1 m; B=50 mm; H=200 mm;  $\alpha$ =80,54°;  $\sigma_{zul}$ =100 N/mm<sup>2</sup>.



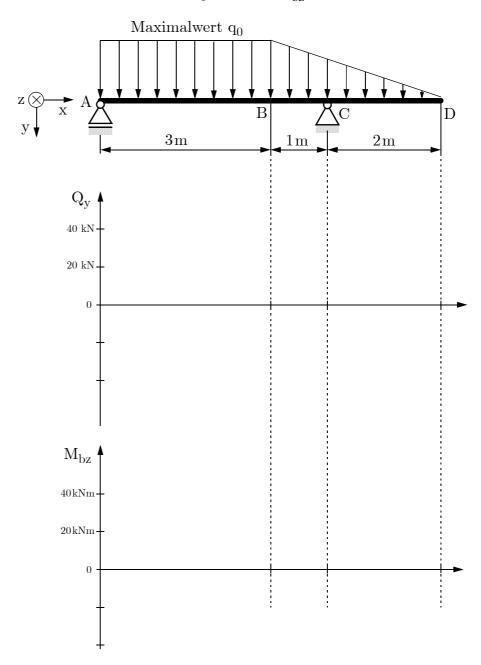
- a) Zeichnen Sie an beliebiger Stelle x in die Skizze ein: die qualitative Verteilung der Gesamtnormalspannung  $\sigma_{ges}$  über der Balkenhöhe H.
- b) Berechnen Sie die Stelle  $\mathbf{x}_0$ , an welcher erstmals eine Druckspannung im Balken auftritt.

$$[x_0 = 800 \, \text{mm}]$$

c) Wie groß darf die Kraft F maximal sein, damit auf der gesamten Balkenlänge L die zulässige Normalspannung  $\sigma_{zul}$  nicht überschritten wird?

$$[F = 169 \text{ kN}]$$

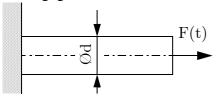
## Aufgabe 5: Schnittlastenverlauf (25 Punkte)

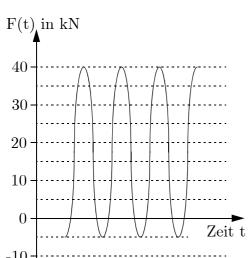

Gegeben: Ein Träger mit einer konstanten und einer linear abnehmenden Streckenlast q(x);

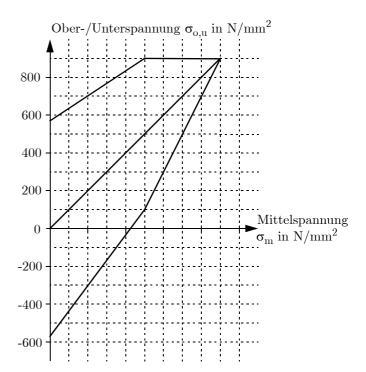
 $q_0 = 24 \text{kN/m}$ ; Längen siehe Abbildung.

Gesucht: a) die Lagerreaktionen in den Lagern A und C,

b) der Querkraft- und Momentenverlauf von A bis D einschließlich der Zahlenwerte an den Stellen B und C,


c) genaue Lage und Größe des maximalen Biegemoments M<sub>bz</sub>.





[a) A=45kN C=63kN c)  $M_{bzmax}=42,2$ kNm bei x=1,875m]

#### Aufgabe 6: Dauerfestigkeit (11 Punkte)

Ein Träger (Durchmesser d=10,55mm) wird mit der dargestellten zeitlich periodischen Zug-/Druck-kraft F(t) belastet (konstante Mittellast). Weiterhin ist das Smith-Diagramm des verwendeten Werkstoffs gegeben.







a) Wie groß ist die Sicherheit  $S_D$  gegen Dauerbruch?

$$[S_D=1,94]$$

b) Wie groß ist die Sicherheit  $S_F$  gegen plastische Verformung?

$$[S_{\mathsf{F}}=1.97]$$

## Aufgabe 7: Zugversuch (8 Punkte)

Eine Gummischnur (Länge  $l=200\,\text{mm}$ ; quadratischer Querschnitt mit Kantenlänge  $a_0=2\,\text{mm}$ ) wird durch eine Zugkraft  $F=10\,\text{N}$  um  $20\,\text{mm}$  linear-elastisch gedehnt.

- a) Stellen Sie qualitativ diesen Versuch in einem Spannungs-Dehnungs-Diagramm (Bild siehe rechts) dar!
  Wie können Sie prinzipiell mit Hilfe dieses Diagramms den Elastizitätsmodul E bestimmen? (einzeichnen)
- b) Berechnen Sie den E-Modul dieser Gummisorte!

$$[E = 25 \text{ N/mm}^2]$$

Δ

c) Die Querkontraktionszahl von Gummi beträgt v=0,5. Auf welche Kantenlänge a<sub>1</sub> ändert sich der Querschnitt der Gummischnur bei diesem Versuch?

$$[a_1 = 1,9 \text{ mm}]$$