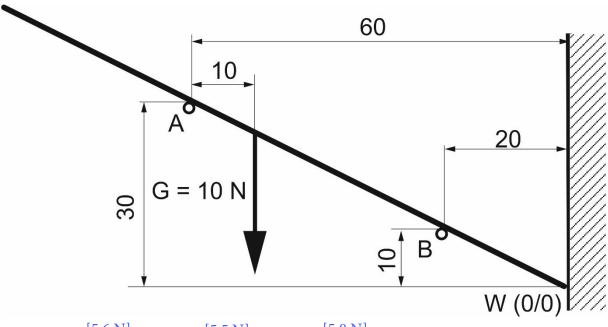


Fakultät 09, Studiengänge WI, LM, AU Prüfung Technische Mechanik SoSe 2020

Dr. Anzinger, Dr. Günther, Dr. Hoffmann, Dr. Meier-Staude, Dr. Schulz

Bearbeitungszeit: 60 min		24.07.2020
Hilfsmittel: Taschenrechner, alle Unterlagen in Papierform		
Name:	Sem.:	Platz-Nr.:
Vorname:		Raum-Nr.:
Studienausweis und Lichtbildausweis sind am Prüfungsplatz aufzulegen		
Unterschrift:	Aufsicht:	


Aufgabe 1: Grafische Lösung (12 Punkte)

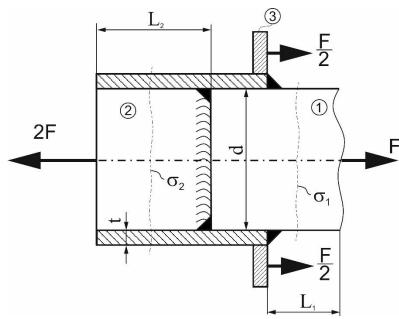
Der Balken ist in der gezeigten Weise auf den beiden Stangen gelagert und stützt sich an der Wand ab. Alle Lager/Kontaktstellen sind reibungsfrei. Die Gewichtskraft G des Balkens greift an der eingezeichneten Stelle an.

Ermitteln Sie zeichnerisch die Kräfte an den Stellen A, B und W.

Übertragen Sie zur Lösung die Angabe auf Ihr Blatt. Nutzen Sie dazu die angegebenen Maße.

(Ma \Re stab 1 cm = 2 N)

Lösung: A = [5,6 N] N, B = [5,5 N] N, W = [5,0 N] N


Aufgabe 2: Spannungen (15 Punkte)

Gegeben ist die gezeigte Schweißkonstruktion. Am Rohr ② greift links die Kraft 2F an. Am Flansch ③ und an der Stange ① greifen jeweils die Kräfte F an.

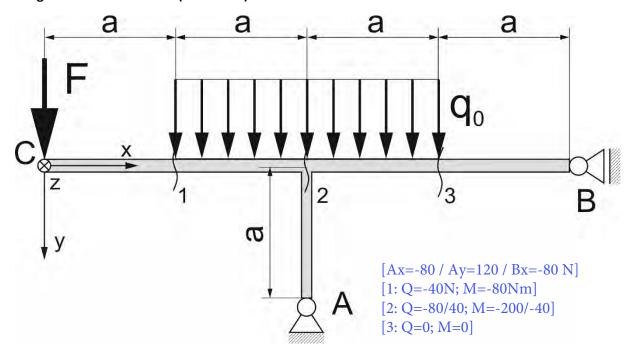
Gegeben: F = 15 kN $L_1 = 50 \text{ mm}$ d = 50 mm t = 5 mm

Elastizitätsmodul Rohr E₂ = 110000 N/mm²

Elastizitätsmodul Stange E_1 = 70000 N/mm² Querdehnungszahl Stange ν = 0,3



- a) Ermitteln Sie die Normalspannung σ_1 in der Stange ① im gekennzeichneten Bereich.
- b) Ermitteln Sie die Normalspannung σ_2 im Rohr (2) im gekennzeichneten Bereich.
- c) Wie groß ist die Längenänderung ΔL_1 im Bereich L_1 ?
- a) 7,6 N/mm²
- d) Wie groß muss L_2 sein, damit die Längenänderung gleich ΔL_1 ist?


b) 34,7 N/mm²

e) Wie groß ist die Durchmesseränderung der Stange ①?

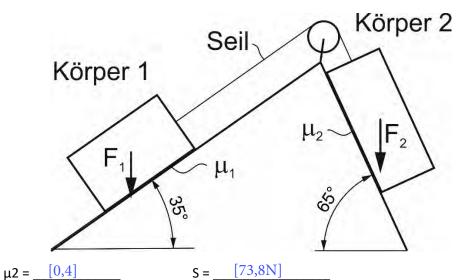
- c) 5,5 μmd) 17,4 mm
- e) 1,6 µm

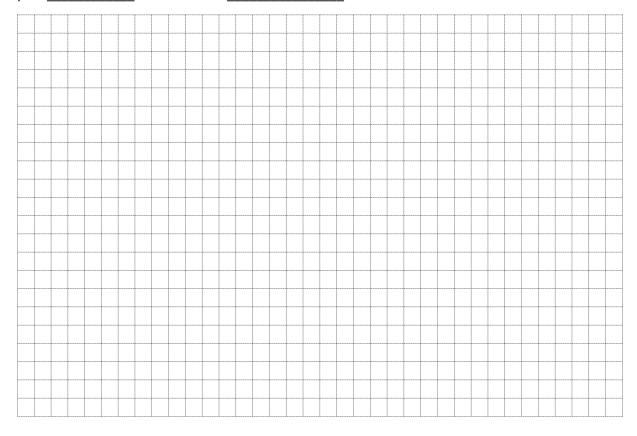
Aufgabe 3: Streckenlasten (20 Punkte)

Ein Balken wird im Punkt B und über eine Stütze im Punkt A gelagert. Im Punkt C wirkt die Last F auf den Balken. Zusätzlich wirkt die konstante Streckenlast q₀ in der Mitte des Balkens.

Gegeben: F = 40 N $q_0 = 20 \text{ N/m}$ a = 2 m

- a) Bestimmen Sie die Auflagerreaktionen A_x , A_y und B_x .
- b) Bestimmen Sie die Querkraft- und die Momentenverläufe im Balken von C bis B einschließlich der Zahlenwerte an den Stellen 1, 2 und 3.




Aufgabe 4: Reibungsaufgabe (13 Punkte)

Die beiden Körper werden durch die Gewichtskräfte F_1 und F_2 belastet und sind in der gezeigten Weise über ein Seil verbunden. Die Umlenkrolle ist reibungsfrei.

Wie groß muss der Reibungskoeffizient μ_2 zwischen Körper 2 und der Unterlage sein, damit er mit konstanter Geschwindigkeit herabgleitet? Wie groß ist die Seilkraft S?

Gegeben: $F_1 = F_2 = 100 \text{ N}, \mu_1 = 0.2$

