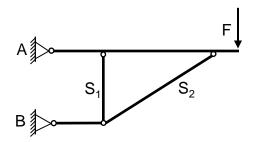


Fakultät 09, Studiengänge WI, LM, AU Prüfung Technische Mechanik WS 2014/15

Prof. Dr. Anzinger, Hoffmann,

Bearbeitungszeit: 90 Min.,	Hilfsmittel:	Taschenrechner,	beiliegende For	melsammlung	Datum:	27.01.2015
Name (lesbar!):				Sem.:	Platz-Nr.	·
Vorname: Der gültige Studienausweis und					Saal-Nr.:	:


Unterschrift: Aufsicht:

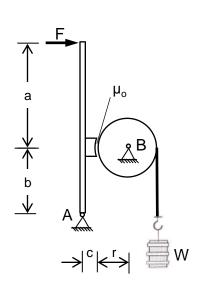
Aufgabe 1: Graphisches Lösungsverfahren (11 Punkte)

Auf untenstehende Konstruktion wirkt eine äußere Kraft von F = 2 kN. Ermitteln Sie graphisch:

a) die Reaktionskräfte in beiden Lagern: [A = 5.3 kN]; [B = 4.8 kN]

b) Die Kräfte in den Bauteilen 1 und 2: $[S_1 = 3.1 \text{ kN}]$; $[S_2 = 5.8 \text{ kN}]$

Kräfteplan (Maßstab: 1cm = 1kN)


Aufgabe 2: Mechanisches Gleichgewicht (9 Punkte)

Ein Gewichtskraft W zieht an einer in B reibungsfrei gelagerten Seilrolle. Diese kann durch den Hebel gemäß Skizze gebremst werden.

Geg.: W, μ_0, a, b, c

Bestimmen Sie die erforderliche Kraft F, welche eine Rotation der Seilrolle verhindert.

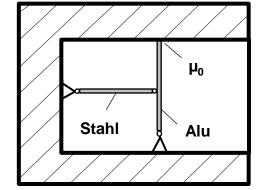
$$\begin{bmatrix}
Ergebnis: & F = \frac{W}{\mu_0} \cdot \frac{(b+c \cdot \mu_0)}{(a+b)}
\end{bmatrix}$$

Aufgabe 3: Reibung und thermische Spannung/Dehnung (8 Punkte)

In einem geschlossenen Kasten sind zwei Streben gleicher Geometrie, aber verschiedener Materialien gemäß Skizze angeordnet. Das Stahl-Bauteil greife in der Mitte des Aluminium-Bauteils an, welches

seinerseits an die obere Wand ohne Spiel kraftlos angelehnt sei.

Daten:

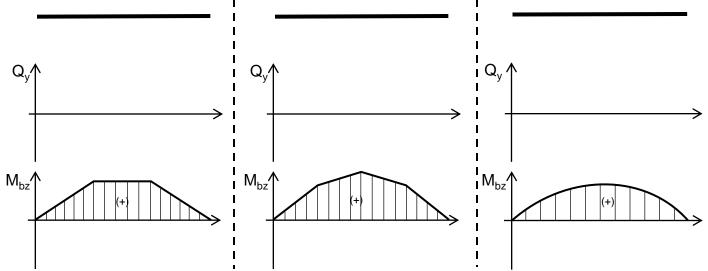

E-Modul: $E_{st} = 210.000 \text{N/mm}^2$; Stahl:

Wärmeausdehnungskoeffizient: α_{St} = 12x10⁻⁶K⁻¹;

Aluminium: E-Modul: $E_{Al} = 80.000 \text{N/mm}^2$;

Wärmeausdehnungskoeffizient: $\alpha_{AI} = 23x10^{-6}K^{-1}$;

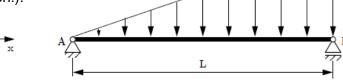
Wie groß muß die Haftreibungszahl μ_0 an der oberen Wand mindestens sein, damit es dort bei gleichmäßiger Erwärmung beider Streben nicht zum Durchrutschen kommt? $[\mu_0 = 0.68]$



Aufgabe 4: Schnittlasten I (12 Punkte)

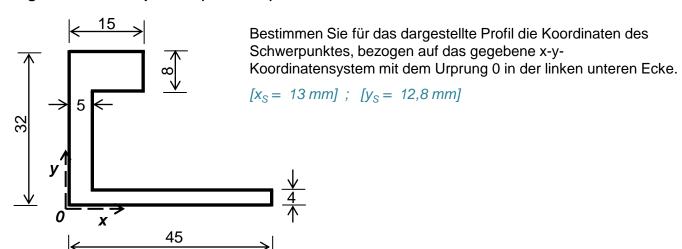
Gegeben sind drei verschiedene Biegemomentenverläufe M_h. Vervollständigen Sie <u>qualitativ</u>:

- a) Die Verläufe der jeweiligen Querkraft Q.
- b) Die zugehörige Belastung des Balkens sowie seine Lagerung.



Aufgabe 5: Schnittlasten II (10 Punkte)

Auf den dargestellten Balken wirke eine lineare Streckenlast q(x). Ermitteln Sie die Gleichungen folgender Verläufe jeweils für die gesamte Balkenlänge, also für 0 < x < L (Verläufe nur berechnen, nicht zeichnen!):


- a) Streckenlast q(x)
- b) Querkraft Q(x) und Biegemoment M(x)

$$\begin{bmatrix} zu \ a): \quad q(x) = q_0 \cdot \frac{x}{L} \end{bmatrix}$$

$$zub): Q(x) = \frac{q_0}{2 \cdot L} \cdot \left(\frac{L^2}{3} - x^2\right) \quad und \quad M(x) = \frac{q_0 \cdot x}{6 \cdot L} \cdot \left(L^2 - x^2\right)$$

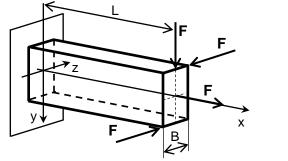
Aufgabe 6: Schwerpunkt (8 Punkte)

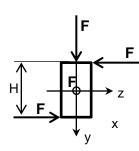
Aufgabe 7: Fragen zur Festigkeit von Bauteilen (7 Punkte)

- a) Welche Materialart reißt bei Zugbelastung unter einem Winkel von ca. 45° bzgl. der Balkenachse und warum?

 [duktiler Workstoff: reißt aufgrund maximaler Schubspannung entlang der Gleitebenen]
 - [duktiler Werkstoff; reißt aufgrund maximaler Schubspannung entlang der Gleitebenen]
- b) Was versteht man unter dem Materialgesetz? [Linearität zw. Spannung und Dehnung] $[\sigma = E \cdot \varepsilon]$
- c) Welcher typischer Wert läßt sich aus dem Smith-Diagramm ermitteln? [Dauerfestigkeit: σ_A]
- d) Wie heißt das aus dem Smith-Diagramm hervorgehende Diagramm, welches die konkreten Bauteildetails berücksichtigt? [Gestaltfestigkeitsdiagramm]
- e) Zur Ermittlung einer Wöhlerkurve wird die Spannung über welcher Größe aufgetragen?
 [Lastspielzahl N]
- f) Wie ist Dauerfestigkeit definiert? [Spannung, welche theoretisch unendlich oft ertragen wird (>106)]

Aufgabe 8: Spannungen am fest eingespannten Balken (25 Punkte)


Der skizzierte Balken ist mit 4 gleich große Kräften F belastet.


Gegeben:

Höhe: H = 300 mmBreite: B = 100 mmLänge: L = 1 mKraft: F = 150 kN

Widerstandsmom. gegen Torsion:

 $W_t = 800.000 \text{ mm}^3$

 a) Vervollständigen Sie die Tabelle, d.h. füllen Sie <u>sämtliche</u> freien Felder aus, indem Sie sowohl die Werte der Spannungen in N/mm², als auch die Koordinaten der jeweiligen Spannungen bzgl. des gegebenen x-y-z-Koordinatensystems eintragen (gemäß eingetragenem Beispiel)

	Spannung in [N/mm²]	х	у	z	
Bsp: Ort feste Einspannung		0	beliebig	beliebig	
σ _{b,max}	[100]	[0]	[± H/2]	[beliebig]	
$\sigma_{\!\scriptscriptstyle b}$	0	[L]	[beliebig]	[beliebig]	
	0	[beliebig]	[0]	[beliebig]	
σ_{b}	[-50]	0	+ H/4	beliebig	
σ_{b}	[-25]	L/2	+ H/4	beliebig	
$\sigma_{\text{ZD,max}}$	[5]	[beliebig]	[beliebig]	[beliebig]	
$ au_{ extsf{Q}, ext{max}}$	[7,5]	[beliebig]	[0]	[beliebig]	
τ _{t,max}	[56,3]	[beliebig]	[0]	[± B/2]	

b) Warum wird die Schubspannung τ_Q infolge Querkraft bei Sicherheitsberechnungen häufig vernachlässigt?

[meist klein gegen σ_b ; Maxima von σ_b und τ_Q an unterschiedlichen Stellen]

c) Geben Sie die Koordinaten der Faser im <u>Längs</u>schnitt des Balkens an, welche die maximale Tangentialspannung infolge Torsion $\tau_{t,max}$ trägt (Schubspannung τ_Q hier vernachlässigen!) und begründen Sie dies mit einem Fachbegriff.

Koordinaten: $[x = beliebig ; y = 0 ; z = \pm B/2]$; Begründung: [zugeordnete Schubspannung]

d) Welches Problem ergibt sich am obigen Balken bei der Berechnung der Vergleichsspannung. (Schubspannung τ_0 hier vernachlässigen!)

[Torsionsspannung ist dort maximal, wo Biegespannung verschwindet]