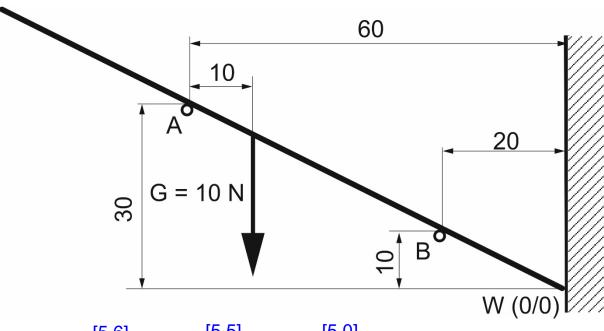


Bachelor Degree Programme WI, LM, AU

Examination Engineering Mechanics SoSe 2020

Dr. Anzinger, Dr. Günther,
Dr. Hoffmann, Dr. Meier-Staude,
Dr. Schulz


Task 1: Graphic Solution (12 points)

The beam is supported on both the two rods and the wall as shown. All supports/contact points are frictionless. The gravitational force G acts at the sketched position.

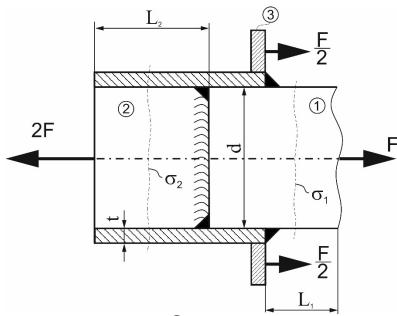
Determine the forces at the positions A, B and W graphically.

Transfer the drawing to your sheet of paper for finding the solution. Use the given dimensions therefore.

(scale 1 cm = 2 N)

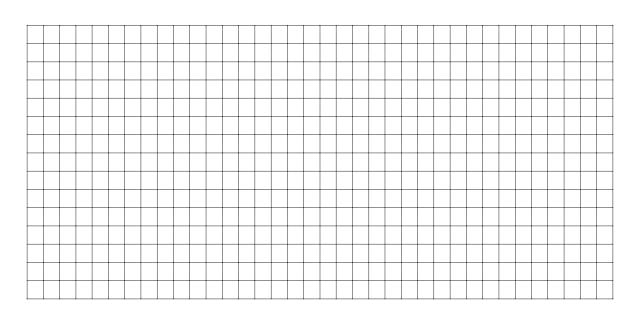
Solution: A = [5,6] N, B = [5,5] N, W = [5,0]

Task 2: Stresses (15 points)

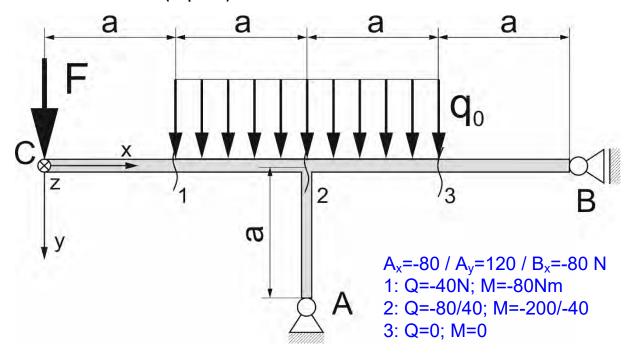

The welded design is given as shown. The tube ② is subjected to the force 2F on the left side, while both the flange ③ and the rod ① are each subjected to the forces F.

Given: F = 15 kN $L_1 = 50 \text{ mm}$ d = 50 mm t = 5 mm

Young's modulus tube E₂ = 110000 N/mm²


Young's modulus rod E₁ = 70000 N/mm²

Poisson's ratio rod v = 0.3



- a) Determine the normal stress σ_1 in the rod ① within the marked section.
- b) Determine the normal stress σ_2 in the tube 2 within the marked section.
- c) Determine the change in length ΔL_1 within the marked section $L_1.$
- d) Determine L_2 such, that the change in length of the tube is equal to $\Delta L_1.$
- e) Determine the change in diameter within the rod (1).

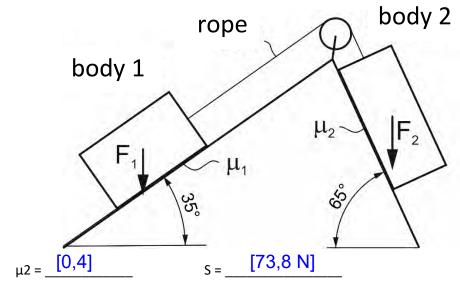
- a) 7,6 N/mm²
- b) 34,7 N/mm²
- c) 5,5 µm
- d) 17,4 mm
- e) 1,6 µm

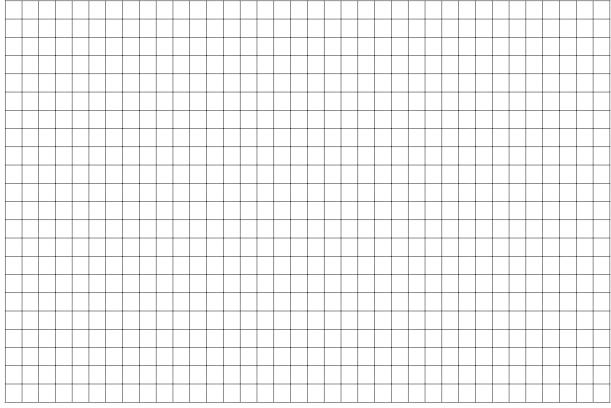
Task 3: Stress resultants (20 points)

A beam is mounted in point B and, via support, in point A. The load F acts in point C against the beam. Additionally the line load q_o acts in the middle of the beam.

Given: F = 40 N $q_0 = 20 \text{ N/m}$ a = 2 m

- a) Determine the support reaction forces A_x , A_y and B_x .
- b) Determine the run of both the transverse force and the bending moment within the beam all the way from C to B, incl. the numerical values at the positions 1, 2 and 3.




Task 4: Friction (13 points)

Both bodies are loaded by the gravitational forces F_1 respectively F_2 and they are connected with each other by a rope as shown. The pulley is frictionless.

Determine the coefficient of friction μ_2 between body 2 and the ramp such, that it can slide down with constant velocity. How large is the rope force S in that case?

Given: $F_1 = F_2 = 100 \text{ N}, \mu_1 = 0.2$

